72 research outputs found

    Maximum Likelihood Estimation of Closed Queueing Network Demands from Queue Length Data

    Get PDF
    Resource demand estimation is essential for the application of analyical models, such as queueing networks, to real-world systems. In this paper, we investigate maximum likelihood (ML) estimators for service demands in closed queueing networks with load-independent and load-dependent service times. Stemming from a characterization of necessary conditions for ML estimation, we propose new estimators that infer demands from queue-length measurements, which are inexpensive metrics to collect in real systems. One advantage of focusing on queue-length data compared to response times or utilizations is that confidence intervals can be rigorously derived from the equilibrium distribution of the queueing network model. Our estimators and their confidence intervals are validated against simulation and real system measurements for a multi-tier application

    BURN: Enabling Workload Burstiness in Customized Service Benchmarks

    No full text

    Maximum Likelihood Estimation of Closed Queueing Network Demands from Queue Length Data

    No full text
    Resource demand estimation is essential for the application of analyical models, such as queueing networks, to real-world systems. In this paper, we investigate maximum likelihood (ML) estimators for service demands in closed queueing networks with load-independent and load-dependent service times. Stemming from a characterization of necessary conditions for ML estimation, we propose new estimators that infer demands from queue-length measurements, which are inexpensive metrics to collect in real systems. One advantage of focusing on queue-length data compared to response times or utilizations is that confidence intervals can be rigorously derived from the equilibrium distribution of the queueing network model. Our estimators and their confidence intervals are validated against simulation and real system measurements for a multi-tier application

    A Bayesian Approach to Parameter Inference in Queueing Networks

    Get PDF
    The application of queueing network models to real-world applications often involves the task of estimating the service demand placed by requests at queueing nodes. In this article, we propose a methodology to estimate service demands in closed multiclass queueing networks based on Gibbs sampling. Our methodology requires measurements of the number of jobs at resources and can accept prior probabilities on the demands. Gibbs sampling is challenging to apply to estimation problems for queueing networks since it requires one to efficiently evaluate a likelihood function on the measured data. This likelihood function depends on the equilibrium solution of the network, which is difficult to compute in closed models due to the presence of the normalizing constant of the equilibrium state probabilities. To tackle this obstacle, we define a novel iterative approximation of the normalizing constant and show the improved accuracy of this approach, compared to existing methods, for use in conjunction with Gibbs sampling. We also demonstrate that, as a demand estimation tool, Gibbs sampling outperforms other popular Markov Chain Monte Carlo approximations. Experimental validation based on traces from a cloud application demonstrates the effectiveness of Gibbs sampling for service demand estimation in real-world studies

    DQMP: A Decentralized Protocol to Enforce Global Quotas in Cloud Environments

    Full text link

    Performance Modeling of the Distributed Computing Environment

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/107936/1/citi-tr-95-6.pd

    Automatic performance modeling of multithreaded programs

    No full text
    corecore